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SOME MONTE CARLO CONCEPTS

Markov chain Monte Carlo methods are used in statistical mechanics to

sample a con�guration C with a probability
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Z(�)

to replace multivariate integrations

hfi =
X

C

f(C)P (C)

by simple averages

hfi � �f �
1

M

MX

i=1

f(Ci) �
1

M

X

i

fi

� P (C) is called the canonical (Boltzmann) distribution.

� Z(�) is called the partition function.

Z(�) =
X

C

e��E(C)

� � is the inverse of the temperature.

� E(C) is the energy of con�guration C.



The Metropolis algorithm which de�nes

P (C0  C) = min[1; P (C0)=P (C)]

is the standard method used to produce the Markov Chain.

For the Boltzmann distribution, the transition probability reduces to

P (C0  C) = min[1; e���E]

where �E = E(C0)� E(C). Note the independence from Z(�).

In statistical mechanics,

E(C) � O(N )

where N is the number of particles; however, the changes in the con�gura-

tions are constructed so that typically

�E � O(1)



Because the changes are small, correlations exist between successive mea-

surements and the measured variance of a physical quantity

�2mc =
1

M � 1
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( �f � fi)
2

becomes related to the true variance by

�2true = �mc �
2
mc

where �mc is an auto-correlation time measured along the chain.

Under typical conditions of interest, �mc is often � 102 � 108 for reasons as
simple as the Monte Carlo simulations simulating physical processes that

have long relaxation time.



Example, near a �rst-order phase transition

�phys / ecEb

Eb / LD�1

where L is the \length" of the system and D is its dimension.

The same scaling with system size is observed in standard Monte Carlo

simulations.

We cannot change �phys but we can try to change �mc. Recently, several

adaptive Monte Carlo methods for sampling multi-modal distribution, like

the bi-modal one observe near a �rst-order transition, have been proposed.



SOME ADAPTIVE METHODS

There seems to be two classes of methods:

1. Multi-canonical

a. replace the sampling from multi-modal Boltzmann distribution by
the sampling from a smoother (uni-modal) non-Boltzmann distribu-

tion.

b. Examples: umbrella sampling, multi-canonical sampling, entropic sampling,
etc.

2. Tempering

a. treat the temperature as a random variable to facilitate movement

over barriers
b. Examples

i. expanded ensemble, simulated tempering, adaptive tempering,

etc.
ii. J-walking, exchange Monte Carlo, etc.



The Multi-Canonical Method*
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How does one choose I(E)?

* B.A. Berg and T. Nehaus, Phys. Lett. B 267, 249 (1991); Phys. Rev.

Lett. 68, 9 (1992).



The Algorithm.

Require

I(E) =
w(E)e�H[E]

Z0

where
Z0 =
X

E

w(E)e�H[E]

Note that I(E) is independent of �!

Observe that if

w(E)e�H[E] = 1

or equivalently
H[E] = lnw(E)
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Estimate I(E) from a simulation

I(E) =
w(E)e�H[E]

Z0

� h(E)

or equivalently

lnw(E) = H[E] + lnZ0h(E)

Start with H[E] = �E,

1. Metropolis sample with I(E) to estimate h(E)

2. H[E] H[E] + lnNEh(E)

3. Repeat



Expanded Ensemble*

What we have been calling P (C) or P (E) are really conditional probabili-

ties.

P (C)! P (Cj�)

Consider a joint probability

P (C; �) = P (Cj�)P (�)

where P (�) is to be determined. It follows that
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Take

I(C) =
X

�

P (Cj�)P (�)

where we note that I(C) is independent of �.

How does one choose P (�)?

* A.P. Lubartsev et al., J. Chem. Phys. 96, 1776 (1992); E. Marinari and

G. Parisi, Europhys. Lett. 19, 451 (1992).



The Algorithm.

Choose a �nite number of values of � designated by �i.

Require
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which implies
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Estimate P (�) from a simulation

P (�i) =
Z(�i)e

��i

Z
� h(�i)

or equivalently
Z(�i) � �i + lnZh(�i)

Start with �i = � lnZ(�i) estimated by some means,

1. Perform a Monte Carlo simulation
a. Select a �i with probability P (�)

b. Metropolis sample with P (Cj�i)

2. �i  �i + lnN�h(�i)

3. Repeat



Exchange Monte Carlo*

P (Cj�)! P (C1; C2; : : : ; CN�
: �1; �2; : : : ; �N�

)
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The algorithm

For each �i, simultaneously do a standard Monte Carlo sampling.

Periodically, exchange a pair of con�gurations i and j with probability

min[1; exp(����E)]

where
�� = �i � �j

�E = E(Cj) � E(Ci)

The algorithm as used to date is not adaptive but can be made so by

attempting to adjust the probability with which temperatures pairs are

chosen.

* K. Hukushima and K. Nemoto, unpublished.



REMARKS

� The various adaptive sampling methods make orders of magnitude reduc-

tion in the auto-correlations times.

� The fewer the modes the better.

� They also allow estimation of the partition function Z(�), the free-energy

� lnZ(�)=�, and the entropy lnw(E).

� Usually a simulation at one value of � determines results at many
values of �.

� The methods are ad hoc.

� The recursive equation can be interpreted in the context of Bayesian
learning methods.

P (�jD1; D2; : : : ; Dn+1) / P (�jD1; D2; : : : ; Dn)P (Dn+1j�)



� One computational bottleneck is the density estimation step.

� This is the subject of research by R. Silver and myself.

� Another bottleneck is the continued use of standard site-by-site Monte

Carlo simulation methods.

� In actuality, the multi-canonical method and expanded ensemble method

are special cases of a more general method.

e�H[Ei] ! e��iEi

�Although more general, it is unclear if these adaptive methods are better in

speci�c applications than other recently established methods, for example,
cluster algorithms, hybrid Monte Carlo, Gibbs ensemble, etc.


